Watch television shows live anywhere. All you need is our Internet TV software, your PC, and Internet connection.
It's easy to find a last episode of Wizards of Waverly Place up and running the next day. No longer is there an excuse to miss your favourite television shows! Internet Television changes the way we watch TV.
One of the most convenient things about live ip TV is that since you are watching it on your computer when a commercial comes around instead of having to sit through it you can just surf the web, which gets rid of the pain of advertisings.
It is amazing the many things we can do with the Internet at home. However Internet television is a significantly new technology, it's catching on so fast that it may soon displace regular television like the cellular is replacing home telephone.
Protein adalah makromolekul yang paling berlimpah di dalam sel hidup dan merupakan 50 % atau lebih kering sel. Protein ditemukan di dalam semua sel dan semua bagian sel. Protein juga amat bervariasi, ratusan jenis yang berbeda dapat ditemukan dalam satu sel. Tambahan lagi, protein mempunyai berbagai peranan biologis, karena protein merupakan instrumen molekuler yang mengekspresikan informasi genetik.
Kunci struktur ribuan protein yang relatif berbeda-beda adalah gugus pada molekul unit pembangun protein yang relatif sederhana. Semua protein, baik yang berasal dari bakteri yang paling tua atau yang berasal dari bentuk kehidupan tertinggi, dibangun dari rangkaian dasar yang sama dari 20 asam amino yang berikatan kovalen dalam urutan yang khas. Karena masing-masing asam amino mempunyai rantai samping yang khusus, yang memberikan sifat kimia masing-masing individu, kelompok 20 molekul unit pembangun ini dapat dianggap sebagai abjad struktur protein.
Diantara banyak fungsi yang harus dipenuhi oleh asam amino dalam sel hidup, terdapat fungsi sebagai unit monomer untuk membangun rantai polipeptida protein. Sebagian besar protein mengandung 20 buah asam amino L-α-amino yang sama dalam proporsi yang beragam. Di samping itu, banyak protein khusus yang juga mengandung asam L-α-amino yang diturunkan dari sebagian di antara ke-20 asam amino tersebut.
Asam amino ialah asam karboksilat yang mempunyai gugus amino. Asam amino yang terdapat sebagai komponen protein mempunyai gugus –NH2 pada atom karbon α dari posisi gugus –COOH. Jenis-jenis asam amino, urutan cara asam amino tersebut terangkai, serta hubungan spasial asam-asam amino tersebut asan menentukan struktur 3 dimensi dan sifat-sifat biologis protein sederhana.
BAB II
PEMBAHASAN
Asam amino ialah asam karboksilat yang mempunyai gugus amino. Asam amino yang terdapat sebagai komponen protein mempunyai gugus –NH2 pada atom karbon α dari posisi gugus –COOH. Jenis-jenis asam amino, urutan cara asam amino tersebut terangkai, serta hubungan spasial asam-asam amino tersebut asan menentukan struktur 3 dimensi dan sifat-sifat biologis protein sederhana.
Kira-kira 75% asam amino digunakan untuk sintesis protein. Asam-asam amino dapat diperoleh dari protein yang kita makan atau dari hasil degradasi protein di dalam tubuh kita. Degradasi ini merupakan proses kontinu. Karena protein di dalam tubuh secara terus menerus diganti (protein turnover). Contoh dari protein turnover, tercantum pada tabel berikut.
Contoh protein turnover.
Protein
Turnover rate (waktu paruh)
Enzim
Di dalam hati
Di dalam plasma
Hemoglobin
Otot
Kolagen
7-10 menit
10 hari
10 hari
120 hari
180 hari
1000 hari
Asam-asam amino juga menyediakan kebutuhan nitrogen untuk:
1.Struktur basa nitrogen DNA dan RNA
2.Heme dan struktur lain yang serupa seperti mioglobin, hemoglobin, sitokrom, enzim dll.
3.Asetilkolin dan neurotransmitter lainnya.
4.Hormon dan fosfolipid
Selain menyediakan kebutuhan nitrogen, asam-asam amino dapat juga digunakan sebagai sumber energi jika nitrogendilepas.
Secara umum, pada asam amino sebuah atom C mengikat empat gugus yaitu : gugus karboksil, gugus amina, satu buah atom hydrogen dan satu gugus sisa (rantai samping, gugus –R). Rantai samping pada asam amino (gugus –R) yang berbeda-beda pada asam amino menentukan struktur, ukuran, muatan elektrik dan sifat kelarutan dalam air.
Biosintesis Asam Amino :
·Bakteri dan Tumbuhan ® sintesis 20 asam amino
·Hewan tingkat tinggi ® 10 asam amino
·Asam amino esensial : asam amino yang tidak disintesis oleh tubuh
·Asam amino non esensial : asam amino yang disintesis oleh tubuh
Jalur metabolik utama dari asam amino
Jalur metabolik utama dari asam-asam amino terdiri atas pertama, produksi asam amino dari pembongkaran protein tubuh, digesti protein diet serta sintesis asam amino di hati. Kedua, pengambilan nitrogen dari asam amino. Sedangkan ketiga adalah katabolisme asam amino menjadi energi melalui siklus asam serta siklus urea sebagai proses pengolahan hasil sampingan pemecahan asam amino. Keempat adalah sintesis protein dari asam-asam amino.
Katabolisme asam amino
Asam-asam amino tidak dapat disimpan oleh tubuh. Jika jumlah asam amino berlebihan atau terjadi kekurangan sumber energi lain (karbohidrat dan protein), tubuh akan menggunakan asam amino sebagai sumber energi. Tidak seperti karbohidrat dan lipid, asam amino memerlukan pelepasan gugus amin. Gugus amin ini kemudian dibuang karena bersifat toksik bagi tubuh.
Ada 2 tahap pelepasan gugus amin dari asam amino, yaitu:
1.Transaminasi
Enzim aminotransferase memindahkan amin kepada α-ketoglutarat menghasilkan glutamat atau kepada oksaloasetat menghasilkan aspartat
2.Deaminasi oksidatif
Pelepasan amin dari glutamat menghasilkan ion amonium
Glutamat juga dapat memindahkan amin ke rantai karbon lainnya, menghasilkan asam amino baru.
Asam Amino EsensialAsam Amino Non Esensia
ArgininAlanin
HistidinAsparagi
IsoleusinAsam Aspartat
LeusinSerin
LisinAsam Glutamat
MetioninGlutamin
FenilalaninHidroksiprolin
TreoninProlin
TriptofanSistein
ValinTirosin
SINTESIS ASAM AMINO
Semua jaringan memiliki kemampuan untuk men-sintesis asam amino non esensial, melakukan remodeling asam amino, serta mengubah rangka karbon non asam amino menjadi asam amino dan turunan lain yang mengandung nitrogen. Tetapi, hati merupakan tempat utama metabolisme nitrogen. Dalam kondisi surplus diet, nitrogen toksik potensial dari asam amino dikeluarkan melalui transaminasi, deaminasi dan pembentukan urea. Rangka karbon umumnya diubah menjadi karbohidrat melalui jalur glukoneogenesis, atau menjadi asam lemak melalui jalur sintesis asam lemak. Berkaitan dengan hal ini, asam amino dikelompokkan menjadi 3 kategori yaitu asam amino glukogenik, ketogenik serta glukogenik dan ketogenik.
Asam amino glukogenik adalah asam-asam amino yang dapat masuk ke jalur produksi piruvat atau intermediat siklus asam sitrat seperti α-ketoglutarat atau oksaloasetat. Semua asam amino ini merupakan prekursor untuk glukosa melalui jalur glukoneogenesis. Semua asam amino kecuali lisin dan leusin mengandung sifat glukogenik. Lisin dan leusin adalah asam amino yang semata-mata ketogenik, yang hanya dapat masuk ke intermediat asetil KoA atau asetoasetil KoA
Sekelompok kecil asam amino yaitu isoleusin, fenilalanin, threonin, triptofan, dan tirosin bersifat glukogenik dan ketogenik. Akhirnya, seharusnya kita kenal bahwa ada 3 kemungkinan penggunaan asam amino. Selama keadaan kelaparan pengurangan rangka karbon digunakan untuk menghasilkan energi, dengan proses oksidasi menjadi CO2 dan H2O.
Dari 20 jenis asam amino, ada yang tidak dapat disintesis oleh tubuh kita sehingga harus ada di dalam makanan yang kita makan. Asam amino ini dinamakan asam amino esensial. Selebihnya adalah asam amino yang dapat disintesis dari asam amino lain. Asam amino ini dinamakan asam amino non-esensial.
SIFAT-SIFAT ASAM AMINO
1. Pada umumnya, asam amino larut dalam air dan tidak larut dalam pelarut organik non polar seperti eter, aseton dan kloroform. Sifat asam amino ini berbeda dengan asam karboksilat maupun dengan sifat amina. Asam karboksilat alifatik maupun aromatik yang terdiri dari beberapa atom karbon, umumnya kurang larut dalam air tetapi larut dalam pelarut organik. Demikian pula amina, pada umumnya tidak larut dalam air, tetapi larut dalam pelarut organik.
2. Asam amino mempunyai titik lebur yang lebih tinggi dibandingkan dengan asam karboksilat atau amina (lebih besar dari 200ºC).
3. Bersifat sebagai elektrolit. Dalam larutan kondisi netral (pH isoelektrik), asam amino dapat membentuk ion yang bermuatan positif dan juga bermuatan negative (zwitterion) atau ion amfoter. Keadaan ion ini sangat tergantung pada pH larutan. Bila ditambahkan dengan basa, maka asam amino akan terdapat dalam bentuk :
H2N – CH – COO-
R
Dan bila ditambahkan asam ke dalam larutan asam amino, maka asam amino yang terbentuk : +H3N – CH – COOH
R
KLASIFIKASI ASAM AMINO
Terdapat 2 jenis asam amino berdasarkan kemampuan tubuh dalam sintesisnya, yaitu asam amino esensial dan asam amino non esensial. Asam amino esensial adalah asam amino yang tidak dapat disintesis didalam tubuh, tetapi diperoleh dari luar misalnya melalui makanan( lisin, leusin, isoleusin, treonin, metionin, valin, fenilalanin, histidin, dan arginin). Asam amino non esensial adalah asam amino yang dapat disintesis didalam tubuh melalui perombakan senyawa lain.
Klasifikasi asam amino dapat dilakukan berdasarkan rantai samping (gugus –R) dan sifat kelarutannya didalam air. Berdasarkan kelarutan didalam air dibagi atas asam amino hidrofobik dan hidrofilik (klasifikasi dapat dilihat pada bagian struktur asam amino). Berdasarkan rantai sampingnya dapat diklasifikasikan sebagai berikut :
- Dengan rantai samping alifatik (asam amino non polar) : Glisin, Alanin, Valin, Leusin, Isoleusin.
- Dengan rantai samping yang mengandung gugus hidroksil (OH), (asam amino polar) : Serin, Treonin, Tirosin.
- Dengan rantai samping yang mengandung atom sulfur (asam amino polar) : Sistein dan metionin.
- Dengan rantai samping yang mengandung gugus asam atau amidanya(gugus R bermuatan negative) : Asam aspartat, Aspargin, Asam glutamate, Glutamin.
- Dengan rantai samping yang mengandung gugus basa (gugus R bermuatan positif): Arginin, lisin, Histidin
- Yang mengandung cincin aromatic : Histidin, Fenilalanin, Tirosin, Triptofan.
- Asam imino : Prolin.
BIOSINTESIS GLUTAMAT DAN ASPARTAT
Glutamat dan aspartat disintesis dari asam α-keto dengan reaksi tranaminasi sederhana. Katalisator reaksi ini adalah enzim glutamat dehidrogenase dan selanjutnya oleh aspartat aminotransferase, AST.
Reaksi biosintesis glutamat
Aspartat juga diturunkan dari asparagin dengan bantuan asparaginase. Peran penting glutamat adalah sebagai donor amino intraseluler utama untuk reaksi transaminasi. Sedangkan aspartat adalah sebagai prekursor ornitin untuk siklus urea.
Biosintesis alanin
Alanin dipindahkan ke sirkulasi oleh berbagai jaringan, tetapi umumnya oleh otot. Alanin dibentuk dari piruvat. Hati mengakumulasi alanin plasma, kebalikan transaminasi yang terjadi di otot dan secara proporsional meningkatkan produksi urea. Alanin dipindahkan dari otot ke hati bersamaan dengan transportasi glukosa dari hati kembali ke otot. Proses ini dinamakan siklus glukosa-alanin. Fitur kunci dari siklus ini adalah bahwa dalam 1 molekul, alanin, jaringan perifer mengekspor piruvat dan amonia ke hati, di mana rangka karbon didaur ulang dan mayoritas nitrogen dieliminir.
Ada 2 jalur utama untuk memproduksi alanin otot yaitu:
1.Secara langsung melalui degradasi protein
2.Melalui transaminasi piruvat dengan bantuan enzim alanin transaminase, ALT (juga dikenal sebagai serum glutamat-piruvat transaminase, SGPT).
Glutamat + piruvat ßàα-ketoglutarat + alanin
Siklus glukosa-alanin
Biosintesis sistein
Sulfur untuk sintesis sistein berasal dari metionin. Kondensasi dari ATP dan metionin dikatalisis oleh enzim metionin adenosiltransfrease menghasilkan S-adenosilmetionin (SAM).
Biosintesis S-adenosilmetionin (SAM)
SAM merupakan precursor untuk sejumlah reaksi transfer metil (misalnya konversi norepinefrin menjadi epinefrin). Akibat dari tranfer metil adalah perubahan SAM menjadi S-adenosilhomosistein. S-adenosilhomosistein selanjutnya berubah menjadi homosistein dan adenosin dengan bantuan enzim adenosilhomosisteinase. Homosistein dapat diubah kembali menjadi metionin oleh metionin sintase.
Reaksi transmetilasi melibatkan SAM sangatlah penting, tetapi dalam kasus ini peran S-adenosilmetionin dalam transmetilasi adalah sekunder untuk produksi homosistein (secara esensial oleh produk dari aktivitas transmetilase). Dalam produksi SAM, semua fosfat dari ATP hilang: 1 sebagai Pi dan 2 sebagai Ppi. Adenosin diubah menjadi metionin bukan AMP.
Dalam sintesis sistein, homosistein berkondensasi dengan serin menghasilkan sistationin dengan bantuan enzim sistationase. Selanjutnya dengan bantuan enzimsistationin liase sistationin diubah menjadi sistein dan α-ketobutirat. Gabungan dari 2 reaksi terakhir ini dikenal sebagai trans-sulfurasi.
Peran metionin dalam sintesis sistein
Biosintesis tirosin
Tirosin diproduksi di dalam sel dengan hidroksilasi fenilalanin. Setengah dari fenilalanin dibutuhkan untuk memproduksi tirosin. Jika diet kita kaya tirosin, hal ini akan mengurangi kebutuhan fenilalanin sampai dengan 50%.
Fenilalanin hidroksilase adalah campuran fungsi oksigenase: 1 atom oksigen digabungkan ke air dan lainnya ke gugus hidroksil dari tirosin. Reduktan yang dihasilkan adalah tetrahidrofolat kofaktor tetrahidrobiopterin, yang dipertahankan dalam status tereduksi oleh NADH-dependent enzyme dihydropteridine reductase (DHPR).
Biosintesis tirosin dari fenilalanin
Biosintesis ornitin dan prolin
Glutamat adalah prekursor ornitin dan prolin. Dengan glutamat semialdehid menjadi intermediat titik cabang menjadi satu dari 2 produk atau lainnya. Ornitin bukan salah satu dari 20 asam amino yang digunakan untuk sintesis protein. Ornitin memainkan peran signifikan sebagai akseptor karbamoil fosfat dalam siklus urea. Ornitin memiliki peran penting tambahan sebagai prekursor untuk sintesis poliamin. Produksi ornitin dari glutamat penting ketika diet arginin sebagai sumber lain untuk ornitin terbatas.
Penggunaan glutamat semialdehid tergantung kepada kondisi seluler. Produksi ornitin dari semialdehid melalui reaksi glutamat-dependen transaminasi. ketika konsentrasi arginin meningkat, ornitin didapatkan dari siklus urea ditambah dari glutamat semialdehid yang menghambat reaksi aminotransferase. Hasilnya adalah akumulasi semialdehid. Semialdehiddidaur secara spontan menjadi Δ1pyrroline-5-carboxylate yang kemudian direduksi menjadi prolin oleh NADPH-dependent reductase.
Biosintesis serin
Jalur utama untuk serin dimulai dari intermediat glikolitik 3-fosfogliserat. NADH-linked dehidrogenase mengubah 3-fosfogliserat menjadi sebuah asam keto yaitu 3-fosfopiruvat, sesuai untuk transaminasi subsekuen. Aktivitas aminotransferasedengan glutamat sebagai donor menghasilkan 3-fosfoserin, yang diubah menjadi serin oleh fosfoserin fosfatase.
Biosintesis glisin
Jalur utama untuk glisin adalah 1 tahap reaksi yang dikatalisis oleh serin hidroksimetiltransferase. Reaksi ini melibatkan transfer gugus hidroksimetil dari serin untuk kofaktor tetrahidrofolat (THF), menghasilkan glisin dan N5, N10-metilen-THF.
Biosintesis aspartat, asparagin, glutamat dan glutamin
Glutamat disintesis dengan aminasi reduktif α-ketoglutarat yang dikatalisis oleh glutamat dehidrogenase yang merupakan reaksi nitrogen-fixing. Glutamat juga dihasilkan oleh reaksi aminotranferase, yang dalam hal ini nitrogen amino diberikan oleh sejumlah asam amino lain. Sehingga, glutamat merupakan kolektor umum nitrogen amino.
Aspartat dibentuk dalam reaksi transaminasi yang dikatalisis oleh aspartat transaminase, AST. Reaksi ini menggunakan analog asam α-keto aspartat, oksaloasetat, dan glutamat sebagai donor amino. Aspartat juga dapat dibentuk dengan deaminasi asparagin yang dikatalisis oleh asparaginase.
Asparagin sintetase dan glutamin sintetase mengkatalisis produksi asparagin dan glutamin dari asam α-amino yang sesuai. Glutamin dihasilkan dari glutamat dengan inkorporasi langsung amonia dan ini merupakan reaksi fixing nitrogen lain. Tetapi asparagin terbentuk oleh reaksi amidotransferase.
BAB III
PENUTUP
Adapun kesimpulan yang dapat diambil adalah asam amino merupakan penyusun protein. Struktur asam amino berupa satu atom C sentral yang mengikat secara kovalent terdiri dari : gugus amino, gugus karboksil, satu atom H, dan rantai samping (gugus R). Sifat-sifat asam amino :
1. Pada umumnya, asam amino larut dalam air dan tidak larut dalam pelarut organik non polar seperti eter, aseton dan kloroform. Sifat asam amino ini berbeda dengan asam karboksilat maupun dengan sifat amina. Asam karboksilat alifatik maupun aromatik yang terdiri dari beberapa atom karbon, umumnya kurang larut dalam air tetapi larut dalam pelarut organik. Demikian pula amina, pada umumnya tidak larut dalam air, tetapi larut dalam pelarut organik.
2. Asam amino mempunyai titik lebur yang lebih tinggi dibandingkan dengan asam karboksilat atau amina (lebih besar dari 200ºC).
3. Bersifat sebagai elektrolit. Dalam larutan kondisi netral (pH isoelektrik), asam amino dapat membentuk ion yang bermuatan positif dan juga bermuatan negative (zwitterion) atau ion amfoter. Keadaan ion ini sangat tergantung pada pH larutan.
Proses pembentukan minyakbumi berdasar teori organik
Mungkin ngga ada yang menyangka sebelumnya bahwa secara alami minyak bumi yang ada secara alami ini dibuat oleh alam ini bahan dasarnya dari ganggang. Ya, selain ganggang, biota-biota lain yang berupa daun-daunan juga dapat menjadi sumber minyak bumi. Tetapi ganggang merupakan biota terpenting dalam menghasilkan minyak. Namun dalam studi perminyakan (yang lanjut dan bikin mumet itu) diketahui bahwa tumbuh-tumbuhan tingkat tinggi akan lebih banyak menghasilkan gas ketimbang menghasilkan minyak bumi. Hal ini disebabkan karena rangkaian karbonnya juga semakin kompleks.
Setelah ganggang-ganggang ini mati, maka akan teredapkan di dasar cekungan sedimen. Keberadaan ganggang ini bisa juga dilaut maupun di sebuah danau. Jadi ganggang ini bisa saja ganggang air tawar, maupun ganggang air laut. Tentusaja batuan yang mengandung karbon ini bisa batuan hasil pengendapan di danau, di delta, maupun di dasar laut. Batuan yang mengandung banyak karbonnya ini yang disebut Source Rock (batuan Induk) yang kaya mengandung unsur Carbon (high TOC-Total Organic Carbon).
Proses pembentukan carbon dari ganggang menjadi batuan induk ini sangat spesifik. Itulah sebabnya tidak semua cekungan sedimen akan mengandung minyak atau gasbumi. Kalau saja carbon ini teroksidasi maka akan terurai dan bahkan menjadi rantai carbon yang tidak mungkin dimasak.
Proses pengendapan batuan ini berlangsung terus menerus. Kalau saja daerah ini terus tenggelam dan terus ditumpuki oleh batuan-batuan lain diatasnya, maka batuan yang mengandung karbon ini akan terpanaskan. Tentusaja kita tahu bahwa semakin kedalam atau masuk amblas ke bumi, akan bertambah suhunya. Ingat ada gradien geothermal ? (lihat penjelasan tentang pematangan dibawah).
Reservoir (batuan Sarang)
Ketika proses penimbunan ini berlangsung tentusaja banyak jenis batuan yang menimbunnya. Salah satu batuan yang nantinya akan menjadi batuan reservoir atau batuan sarang. Pada prinsipnya segala jenis batuan dapat menjadi batuan sarang, yang penting ada ruang pori-pori didalamnya. Batuan sarang ini dapat berupa batupasir, batugamping bahkan batuan volkanik.
Proses migrasi dan pemerangkapan
Minyak yang dihasilkan oleh batuan induk yang termatangkan ini tentusaja berupa minyak mentah. Walaupun berupa cairan, minyakbumi yang mentah ciri fisiknya berbeda dengan air. Dalam hal ini sifat fisik yang terpenting yaitu berat-jenis dan kekentalan. Ya, walaupun kekentalannya lebih tinggi dari air, namun berat jenis minyakbumi ini lebih kecil. Sehingga harus mengikuti hukum Archimides. Inget kan si jenius yang menurut hikayat lari telanjang ? Sambil berteriak, “Eureka .. eureka !!”. Demikianlah juga dengan minyak yang memiliki BJ lebih rendah dari air ini akhirnya akan cenderung ber”migrasi” keatas.
Ketika minyak tertahan oleh sebuah bentuk batuan yang menyerupai mangkok terbalik, maka minyak ini akan tertangkap atau lebih sering disebut terperangkap dalam sebuah jebakan (trap).
Proses pematangan batuan induk (Source rock)
Untuk sedikit lebih canggih dalam memahami proses pembentukan migas, dongeng berikut ini menjelaskan hanya masalah pematangannya.
Seperti disebutkan diatas bahwa pematangan source rock (batuan induk) ini karena adanya proses pemanasan. Juga diketahui semakin dalam batuan induk akan semakin panas dan akhirnya menghasilkan minyak. Tentunya ada donk hubungan antara kedalaman dengan pematangan ? Ya tentusaja.
Proses pemasakan ini tergantung suhunya dan karena suhu ini tergantung dari besarnya gradien geothermalnya maka setiap daerah tidak sama tingkat kematangannya.
Daerah yang dingin adalah daerah yang gradien geothermalnya rendah, sedangkan daerah yang panas memiliki gradien geothermal tinggi.
Dalam gambar diatas ini terlihat bahwa minyak terbentuk pada suhu antara 50-180 derajat Celsius. Tetapi puncak atau kematangan terbagus akan tercapai bila suhunya mencapai 100 derajat Celsius. Ketika suhu terus bertambah karena cekungan itu semakin turun
Minyak bumi
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Minyak bumi (bahasa Inggris: petroleum, dari bahasa Latinpetrus – karang dan oleum – minyak), dijuluki juga sebagai emas hitam, adalah cairan kental, coklat gelap, atau kehijauan yang mudah terbakar, yang berada di lapisan atas dari beberapa area di kerakBumi. Minyak bumi terdiri dari campuran kompleks dari berbagai hidrokarbon, sebagian besar seri alkana, tetapi bervariasi dalam penampilan, komposisi, dan kemurniannya.
Komponen kimia dari minyak bumi dipisahkan oleh proses distilasi, yang kemudian, setelah diolah lagi, menjadi minyak tanah, bensin, lilin, aspal, dll.
Minyak bumi terdiri dari hidrokarbon, senyawaan hidrogen dan karbon.
Empat alkana teringan- CH4 (metana), C2H6 (etana), C3H8 (propana), dan C4H10 (butana) - semuanya adalah gas yang mendidih pada -161.6°C, -88.6°C, -42°C, dan -0.5°C, berturut-turut (-258.9°, -127.5°, -43.6°, dan +31.1° F).
Rantai dalam wilayah C5-7 semuanya ringan, dan mudah menguap, nafta jernih. Senyawaan tersebut digunakan sebagai pelarut, cairan pencuci kering (dry clean), dan produk cepat-kering lainnya. Rantai dari C6H14 sampai C12H26 dicampur bersama dan digunakan untuk bensin. Minyak tanah terbuat dari rantai di wilayah C10
Minyak pelumas dan gemuk setengah-padat (termasuk Vaseline®) berada di antara C16 sampai ke C20.
Rantai di atas C20 berwujud padat, dimulai dari "lilin, kemudian tar, dan bitumen aspal.
Titik pendidihan dalam tekanan atmosfer fraksi distilasi dalam derajat Celcius:
Beberapa ilmuwan menyatakan bahwa minyak adalah zat abiotik, yang berarti zat ini tidak berasal dari fosil tetapi berasal dari zat anorganik yang dihasilkan secara alami dalam perut bumi. Namun, pandangan ini diragukan dalam lingkungan ilmiah.
Catatan:
1 Total produksi termasuk minyak mentah, gas alam, kondesat dan cairan lainnya.
2Amerika Serikat mengkonsumsi seluruh minyak yang diproduksinya.
3 Yang dicetak tebal adalah negara-negara anggota OPEC.
pertama kalinya orang mengenal minyak bumi ini di daerah Mesopotamia. Bahkan menurut catatan sejarah, orang China udah coba-coba ngebor minyak bumi sejak sebelum zaman masehi.
Permulaan ada industri minyak bumi, adanya di negerinya Paman Syam alias Amerika Serikat sekitar abad 19. Minyak bumi ini jadi begitu berharga karena suatu hari di Glasgow ditemukan cara mengolah minyak bumi menjadi minyak lampu, makanya minyak bumi semakin dicari dan diburu. Lapangan-lapangan minyak raksasa mulai ditemukan di tanah arab beberapa tahun sebelum Perang Dunia II meledak.
Eksplorasi Minyak Bumi
Sejarah pengeboran minyak bumi ini untuk kali pertama dalam sejarah pengeboran pertama dilakukan sekitar tahun 1885, pengeboran ini sukses memproduksi minyak secara komersil. Pekerjaan ini sukses dilakoni oleh mbah Aeilko Jans Zifiker di telaga tunggal no I pada kedalaman 22 meter.
Begitu awalnya bagaimana orang berhasil mengangkat minyak yang ada di perut bumi ini dan mengolahnya di atas perut bumi. Sebenarnya minyak dan gas bumi itu apaan sih?
Minyak dan gas bumi itu khan biasa juga disebut dengan hidrokarbon, karena penyusun utamanya adalah C (Carbon) dan H (hydrogen). Hidrokarbon ini berasal dari organic, senyawa utama yang bertugas membentuk minyak dan gas bumi ini adalah lipids (lemak,steroid, dan pigmen), protein dan karbohidrat. Proses pembentukkannya menjadi minyak bumi itu membutuhkan waktu yang lama (dalam skala jutaan tahun) dan proses yang kompleks. Komponen dan proses yang diperlukan buat membentuk dan menyimpan hidrokarbon disebut dengan “petroleum System”. Agar minyak bumi ini bisa terbentuk di dalam perut bumi ini harus ada 5 syarat yang wajib ada Yaitu :
1. Batuan induk yang matang (source rock)
2. Jalur migrasi (migration pathways)
3. Batuan reservoir (reservoir rock)
4. Perangkap (trap)
5. Penyekat (seal)
Kajian Geologi Untuk menentukan suatu daerah mempunyai potensi akan minyak bumi, maka ada beberapa kondisi yang harus ada di daerah tersebut. Jika salah satu saja tidak ada maka daerah tersebut tidak potensial atau bahkan tidak mengandung hidrokarbon. Kondisi itu adalah:
Batuan Sumber (Source Rock) Yaitu batuan yang menjadi bahan baku pembentukan hidrokarbon. biasanya yang berperan sebagai batuan sumber ini adalah serpih. batuan ini kaya akan kandungan unsur atom karbon (C) yang didapat dari cangkang - cangkang fosil yang terendapkan di batuan itu. Karbon inilah yang akan menjadi unsur utama dalam rantai penyusun ikatan kimia hidrokarbon.
Tekanan dan Temperatur
Untuk mengubah fosil tersebut menjadi hidrokarbon, tekanan dan temperatur yang tinggi di perlukan. Tekanan dan temperatur ini akan mengubah ikatan kimia karbon yang ada dibatuan menjadi rantai hidrokarbon. Migrasi
Hirdokarbon yang telah terbentuk dari proses di atas harus dapat berpindah ke tempat dimana hidrokarbon memiliki nilai ekonomis untuk diproduksi. Di batuan sumbernya sendiri dapat dikatakan tidak memungkinkan untuk di ekploitasi karena hidrokarbon di sana tidak terakumulasi dan tidak dapat mengalir. Sehingga tahapan ini sangat penting untuk menentukan kemungkinan eksploitasi hidrokarbon tersebut.
Reservoar
Adalah batuan yang merupakan wadah bagi hidrokarbon untuk berkumpul dari proses migrasinya. Reservoar ini biasanya adalah batupasir dan batuan karbonat, karena kedua jenis batu ini memiliki pori yang cukup besar untuk tersimpannya hidrokarbon. Reservoar sangat penting karena pada batuan inilah minyak bumi di produksi.
Perangkap (Trap) Sangat penting suatu reservoar di lindungi oleh batuan perangkap. tujuannya agar hidrokarbon yang ada di reservoar itu terakumulasi di tempat itu saja. Jika perangkap ini tidak ada maka hidrokarbon dapat mengalir ketempat lain yang berarti ke ekonomisannya akan berkurang atau tidak ekonomis sama sekali. Perangkap dalam hidrokarbon terbagi 2 yaitu perangkap struktur dan perangkap stratigrafi.
Kajian geologi merupakan kajian regional, jika secara regional tidak memungkinkan untuk mendapat hidrokarbon maka tidak ada gunanya untuk diteruskan. Jika semua kriteria di atas terpenuhi maka daerah tersebut kemungkinan mempunyai potensi minyak bumi atau pun gas bumi. Sedangkan untuk menentukan ekonomis atau tidaknya diperlukan kajian yang lebih lanjut yang berkaitan dengan sifat fisik batuan. Maka penelitian dilanjutkan pada langkah berikutnya.
Kajian Geofisika
setelah kajian secara regional dengan menggunakan metoda geologi dilakukan, dan hasilnya mengindikasikan potensi hidrokarbon, maka tahap selanjutnya adalah tahapan kajian geofisika. Pada tahapan ini metoda - metoda khusus digunakan untuk mendapatkan data yang lebih akurat guna memastikan keberadaan hidrokarbon dan kemungkinannya untuk dapat di ekploitasi. Data-data yang dihasilkan dari pengukuran pengukuran merupakan cerminan kondisi dan sifat-sifat batuan di dalam bumi. Ini penting sekali untuk mengetahui apakan batuan tersebut memiliki sifat - sifat sebagai batuan sumber, reservoar, dan batuan perangkap atau hanya batuan yang tidak penting dalam artian hidrokarbon. Metoda-metoda ini menggunakan prinsip-prinsip fisika yang
DAFTAR PUSTAKA
Austin, T. George. 1985. Shreves Chemical Process Industries. Mc Graw Hill Book
Company.
Fieser, Louis F and Mary Fieser. 1950. Organic Chemistry. Second Edition. D.C.
Heatch and Company: Boston.
Mc Murry, Jhon. 1992. Organic Chemistry. Third Edition. Brooks Publishing Company:
California.
Nawawi, Harun. 1955. Minyak Bum; dan Hasil Minyak Bumi, Penggalian, Pengerjaan
dan Pemakaiannya. Penerbit Buku Teknik: Jakarta.
Wiseman, Peter. 1983. An Introduction to Industrial Organic Chemistry. Second